If it's not what You are looking for type in the equation solver your own equation and let us solve it.
j^2=3
We move all terms to the left:
j^2-(3)=0
a = 1; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·1·(-3)
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{3}}{2*1}=\frac{0-2\sqrt{3}}{2} =-\frac{2\sqrt{3}}{2} =-\sqrt{3} $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{3}}{2*1}=\frac{0+2\sqrt{3}}{2} =\frac{2\sqrt{3}}{2} =\sqrt{3} $
| -4(5-5m)+m=85 | | 7x+6=-38 | | m+18/5=8 | | 50z=25 | | 4-7w=12-3w | | 2x-9x+16=100 | | 4a+8=12, | | 4x-2=x+2(x+4) | | -(8-3x)=-2(1-x)+6 | | 5y-6=4y-9 | | 30-3a=-5(4a+2) | | 5+6p=71 | | -4(-2g-10)=-2(3g+10)-10 | | -8r-9=-16 | | 18=-2n-8 | | 7/9x−4/9x=1/4+5/12 | | 36=w/6+30 | | 14x-19=4x+3 | | 13(6x+3)=27 | | 3(x+1)=7+x-2 | | 13(6x+3)=27 | | 410=1080(0.915)x | | 28-10f=-42 | | 2r+11=17 | | 7=f-6/9 | | 1.9(m-4.2)-3.48=5.26 | | 14y-9=12y+8 | | g/2-25=-16 | | 19=-6(3f+2) | | f-64/4=5 | | (9x+2)=(13x-18)=(17x+1) | | 6(2m+8)=48 |